Activation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons.

نویسندگان

  • Zhenglin Gu
  • Qian Jiang
  • Eunice Y Yuen
  • Zhen Yan
چکیده

One of the important targets of dopamine D4 receptors in prefrontal cortex (PFC) is the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of D4 receptor activation on subcellular localization of CaMKII. We found that activation of D4 receptors, but not D2 receptors, induced a rapid translocation of alpha-CaMKII from cytosol to postsynaptic sites in cultured PFC neurons. Activated CaMKII (Thr286 phospho-CaMKII) was also redistributed to postsynaptic sites after D4 receptor stimulation. The translocation was blocked by inhibiting the phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+ signaling. Point mutation of the calmodulin binding site (Ala302), but not the autophosphorylation site (Thr286), of alpha-CaMKII prevented the D4-induced CaMKII translocation. Moreover, D4 receptors failed to induce CaMKII translocation in the presence of an actin stabilizer, and D4 activation reduced the binding of CaMKII to F-actin. Concomitant with the synaptic accumulation of alpha-CaMKII in response to D4 receptor activation, a D4-induced increase in the CaMKII phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor glutamate receptor 1 (GluR1) subunits and the amplitude of AMPA receptor-mediated excitatory postsynaptic currents was also observed. Thus, our results show that D4 receptor activation induces the synaptic translocation of CaMKII through a mechanism involving Ca2+/calmodulin and F-actin, which facilitates the regulation of synaptic targets of CaMKII, such as AMPA receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex.

Increasing evidence has suggested that the interaction between dopaminergic and glutamatergic systems in prefrontal cortex (PFC) plays an important role in normal mental functions and neuropsychiatric disorders. In this study, we examined the regulation of NMDA-type glutamate receptors by the PFC dopamine D4 receptor (one of the principal targets of antipsychotic drugs). Application of the D4 r...

متن کامل

Bidirectional regulation of Ca2+/calmodulin-dependent protein kinase II activity by dopamine D4 receptors in prefrontal cortex.

The dopamine D4 receptor in prefrontal cortex (PFC) plays a key role in normal mental functions and neuropsychiatric disorders. However, the cellular mechanisms and physiological actions of D4 receptors remain elusive. In this study, we found that activation of D4 receptors in PFC exerts a complex regulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), a multifunctional enzyme criti...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Restoration of glutamatergic transmission by dopamine D4 receptors in stressed animals.

The prefrontal cortex (PFC), a key brain region for cognitive and emotional processes, is highly regulated by dopaminergic inputs. The dopamine D4 receptor, which is enriched in PFC, has been implicated in mental disorders, such as attention deficit-hyperactivity disorder and schizophrenia. Recently we have found homeostatic regulation of AMPA receptor-mediated synaptic transmission in PFC pyra...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 69 3  شماره 

صفحات  -

تاریخ انتشار 2006